Лента постов канала Python Projects & Free Books (@pythonfreebootcamp) https://t.me/pythonfreebootcamp Python Interview Projects & Free Courses Admin: @Coderfun Buy ads: https://telega.io/c/pythonfreebootcamp ru https://linkbaza.com/catalog/-1001218627802 Mon, 18 Aug 2025 17:26:13 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Mon, 18 Aug 2025 10:25:59 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Mon, 18 Aug 2025 08:00:28 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sun, 17 Aug 2025 09:46:59 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sun, 17 Aug 2025 09:33:11 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Fri, 15 Aug 2025 10:14:31 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Fri, 15 Aug 2025 08:16:37 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 14 Aug 2025 23:13:31 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 14 Aug 2025 13:41:22 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 14 Aug 2025 08:22:23 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 13 Aug 2025 15:59:10 +0300
🔍 Real-World Data Analyst Tasks & How to Solve Them

As a Data Analyst, your job isn’t just about writing SQL queries or making dashboards—it’s about solving business problems using data. Let’s explore some common real-world tasks and how you can handle them like a pro!

📌 Task 1: Cleaning Messy Data

Before analyzing data, you need to remove duplicates, handle missing values, and standardize formats.

✅ Solution (Using Pandas in Python):

import pandas as pd  
df = pd.read_csv('sales_data.csv')
df.drop_duplicates(inplace=True) # Remove duplicate rows
df.fillna(0, inplace=True) # Fill missing values with 0
print(df.head())


💡 Tip: Always check for inconsistent spellings and incorrect date formats!


📌 Task 2: Analyzing Sales Trends

A company wants to know which months have the highest sales.

✅ Solution (Using SQL):

SELECT MONTH(SaleDate) AS Month, SUM(Quantity * Price) AS Total_Revenue  
FROM Sales
GROUP BY MONTH(SaleDate)
ORDER BY Total_Revenue DESC;


💡 Tip: Try adding YEAR(SaleDate) to compare yearly trends!


📌 Task 3: Creating a Business Dashboard

Your manager asks you to create a dashboard showing revenue by region, top-selling products, and monthly growth.

✅ Solution (Using Power BI / Tableau):

👉 Add KPI Cards to show total sales & profit

👉 Use a Line Chart for monthly trends

👉 Create a Bar Chart for top-selling products

👉 Use Filters/Slicers for better interactivity

💡 Tip: Keep your dashboards clean, interactive, and easy to interpret!

Like this post for more content like this ♥️

Share with credits: https://t.me/sqlspecialist

Hope it helps :)
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 13 Aug 2025 12:07:10 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 13 Aug 2025 11:52:18 +0300
Top Libraries & Frameworks by Language 📚💻

❯ Python
 • Pandas ➟ Data Analysis
 • NumPy ➟ Math & Arrays
 • Scikit-learn ➟ Machine Learning
 • TensorFlow / PyTorch ➟ Deep Learning
 • Flask / Django ➟ Web Development
 • OpenCV ➟ Image Processing

❯ JavaScript / TypeScript
 • React ➟ UI Development
 • Vue ➟ Lightweight SPAs
 • Angular ➟ Enterprise Apps
 • Next.js ➟ Full-Stack Web
 • Express ➟ Backend APIs
 • Three.js ➟ 3D Web Graphics

❯ Java
 • Spring Boot ➟ Microservices
 • Hibernate ➟ ORM
 • Apache Maven ➟ Build Automation
 • Apache Kafka ➟ Real-Time Data

❯ C++
 • Boost ➟ Utility Libraries
 • Qt ➟ GUI Applications
 • Unreal Engine ➟ Game Development

❯ C#
 • .NET / ASP.NET ➟ Web Apps
 • Unity ➟ Game Development
 • Entity Framework ➟ ORM

❯ R
 • ggplot2 ➟ Data Visualization
 • dplyr ➟ Data Manipulation
 • caret ➟ Machine Learning
 • Shiny ➟ Interactive Dashboards

❯ PHP
 • Laravel ➟ Full-Stack Web
 • Symfony ➟ Web Framework
 • PHPUnit ➟ Testing

❯ Go (Golang)
 • Gin ➟ Web Framework
 • Gorilla ➟ Web Toolkit
 • GORM ➟ ORM for Go

❯ Rust
 • Actix ➟ Web Framework
 • Rocket ➟ Web Development
 • Tokio ➟ Async Runtime

Coding Resources: https://whatsapp.com/channel/0029VahiFZQ4o7qN54LTzB17

React with ❤️ for more useful content
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 13 Aug 2025 10:11:52 +0300
𝐒𝐭𝐚𝐫𝐭 𝐘𝐨𝐮𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 𝐉𝐨𝐮𝐫𝐧𝐞𝐲 — 𝟏𝟎𝟎% 𝐅𝐫𝐞𝐞 & 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫-𝐅𝐫𝐢𝐞𝐧𝐝𝐥𝐲😍

Want to dive into data analytics but don’t know where to start?🧑‍💻✨️

These free Microsoft learning paths take you from analytics basics to creating dashboards, AI insights with Copilot, and end-to-end analytics with Microsoft Fabric.📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/47oQD6f

No prior experience needed — just curiosity✅️
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 12 Aug 2025 09:05:38 +0300
𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁 𝘃𝘀. 𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿 𝘃𝘀. 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝘃𝘀. 𝗠𝗟 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿

𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁

Think of them as data detectives.
→ 𝐅𝐨𝐜𝐮𝐬: Identifying patterns and building predictive models.
→ 𝐒𝐤𝐢𝐥𝐥𝐬: Machine learning, statistics, Python/R.
→ 𝐓𝐨𝐨𝐥𝐬: Jupyter Notebooks, TensorFlow, PyTorch.
→ 𝐆𝐨𝐚𝐥: Extract actionable insights from raw data.
𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Creating a recommendation system like Netflix.

𝗗𝗮𝘁𝗮 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿

The architects of data infrastructure.
→ 𝐅𝐨𝐜𝐮𝐬: Developing data pipelines, storage systems, and infrastructure. → 𝐒𝐤𝐢𝐥𝐥𝐬: SQL, Big Data technologies (Hadoop, Spark), cloud platforms.
→ 𝐓𝐨𝐨𝐥𝐬: Airflow, Kafka, Snowflake.
→ 𝐆𝐨𝐚𝐥: Ensure seamless data flow across the organization.
𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Designing a pipeline to handle millions of transactions in real-time.

𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁

Data storytellers.
→ 𝐅𝐨𝐜𝐮𝐬: Creating visualizations, dashboards, and reports.
→ 𝐒𝐤𝐢𝐥𝐥𝐬: Excel, Tableau, SQL.
→ 𝐓𝐨𝐨𝐥𝐬: Power BI, Looker, Google Sheets.
→ 𝐆𝐨𝐚𝐥: Help businesses make data-driven decisions.
𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Analyzing campaign data to optimize marketing strategies.

𝗠𝗟 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿

The connectors between data science and software engineering.
→ 𝐅𝐨𝐜𝐮𝐬: Deploying machine learning models into production.
→ 𝐒𝐤𝐢𝐥𝐥𝐬: Python, APIs, cloud services (AWS, Azure).
→ 𝐓𝐨𝐨𝐥𝐬: Kubernetes, Docker, FastAPI.
→ 𝐆𝐨𝐚𝐥: Make models scalable and ready for real-world applications. 𝐄𝐱𝐚𝐦𝐩𝐥𝐞: Deploying a fraud detection model for a bank.

𝗪𝗵𝗮𝘁 𝗣𝗮𝘁𝗵 𝗦𝗵𝗼𝘂𝗹𝗱 𝗬𝗼𝘂 𝗖𝗵𝗼𝗼𝘀𝗲?

☑ Love solving complex problems?
→ Data Scientist
☑ Enjoy working with systems and Big Data?
→ Data Engineer
☑ Passionate about visual storytelling?
→ Data Analyst
☑ Excited to scale AI systems?
→ ML Engineer

Each role is crucial and in demand—choose based on your strengths and career aspirations.

What’s your ideal role?

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content

ENJOY LEARNING 👍👍
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 12 Aug 2025 08:31:29 +0300
𝗦𝘁𝗲𝗽 𝗜𝗻𝘁𝗼 𝗮 𝗕𝗖𝗚 𝗔𝗻𝗮𝗹𝘆𝘀𝘁’𝘀 𝗦𝗵𝗼𝗲𝘀: 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗦𝗶𝗺𝘂𝗹𝗮𝘁𝗶𝗼𝗻 + 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗲😍

💼 Ever Wondered How Data Shapes Real Business Decisions at a Top Consulting Firm?🧑‍💻✨️

Now you can experience it firsthand with this interactive simulation from BCG (Boston Consulting Group)📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45HWKRP

This is a powerful resume booster and a unique way to prove your analytical skills✅️
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Mon, 11 Aug 2025 11:36:18 +0300
Machine Learning Algorithms and Frameworks
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Mon, 11 Aug 2025 10:26:44 +0300
𝟓 𝐅𝐫𝐞𝐞 𝐘𝐨𝐮𝐓𝐮𝐛𝐞 𝐑𝐞𝐬𝐨𝐮𝐫𝐜𝐞𝐬 𝐭𝐨 𝐁𝐮𝐢𝐥𝐝 𝐀𝐈 𝐀𝐮𝐭𝐨𝐦𝐚𝐭𝐢𝐨𝐧𝐬 & 𝐀𝐠𝐞𝐧𝐭𝐬 𝐖𝐢𝐭𝐡𝐨𝐮𝐭 𝐂𝐨𝐝𝐢𝐧𝐠😍

Want to Create AI Automations & Agents Without Writing a Single Line of Code?🧑‍💻

These 5 free YouTube tutorials will take you from complete beginner to automation expert in record time.🧑‍🎓✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4lhYwhn

Just pure, actionable automation skills — for free.✅️
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sun, 10 Aug 2025 17:03:30 +0300
🔰 Python Toolkit for Data Analysis
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sun, 10 Aug 2025 08:36:02 +0300
𝗠𝗮𝘀𝘁𝗲𝗿 𝗔𝘇𝘂𝗿𝗲 𝗠𝗮𝗰𝗵𝗶𝗻𝗲 𝗟𝗲𝗮𝗿𝗻𝗶𝗻𝗴 𝗳𝗼𝗿 𝗙𝗿𝗲𝗲 𝘄𝗶𝘁𝗵 𝗧𝗵𝗲𝘀𝗲 𝟯 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗠𝗼𝗱𝘂𝗹𝗲𝘀!😍

Start Mastering Azure Machine Learning — 100% Free!💥

Want to get into AI and Machine Learning using Azure but don’t know where to begin?📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45oT5r0

These official Microsoft Learn modules are all you need — hands-on, beginner-friendly, and backed with certificates🧑‍🎓📜
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sat, 09 Aug 2025 10:51:33 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sat, 09 Aug 2025 07:54:48 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Fri, 08 Aug 2025 12:59:09 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Fri, 08 Aug 2025 10:03:48 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 07 Aug 2025 13:43:05 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 07 Aug 2025 10:01:14 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 06 Aug 2025 14:08:33 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 06 Aug 2025 09:52:50 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 05 Aug 2025 11:57:03 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 05 Aug 2025 08:55:40 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Mon, 04 Aug 2025 20:49:01 +0300
List Comprehension in Python
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Fri, 01 Aug 2025 21:18:35 +0300
Fullstack Developer Skills & Technologies
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 31 Jul 2025 09:59:11 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 31 Jul 2025 08:27:51 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 30 Jul 2025 15:41:00 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 30 Jul 2025 10:07:58 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 29 Jul 2025 14:16:31 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 29 Jul 2025 09:55:27 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Mon, 28 Jul 2025 19:46:02 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Mon, 28 Jul 2025 09:54:18 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sun, 27 Jul 2025 12:29:14 +0300
🚀 Microsoft is offering some FREE courses 🚀


1️⃣ AI for beginners
Check this out 👇
http://microsoft.github.io/AI-For-Beginners


2️⃣ IOT
Check this out 👇
https://microsoft.github.io/IoT-For-Beginners


3️⃣ Machine Learning
Check this out👇
http://microsoft.github.io/ML-For-Beginners/#/


4️⃣ Data Science
Check this out👇
http://microsoft.github.io/Data-Science-For-Beginners/#/

Free Coding Courses 👇
https://t.me/programming_guide

Few more courses ✅

𝟭.𝗗𝗮𝘁𝗮 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/azure-data-fundamentals-explore-non-relational-data/

𝟮.𝗦𝗾𝗹 𝗙𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/azure-sql-fundamentals/

𝟯.𝗣𝗼𝘄𝗲𝗿 𝗕𝗜
https://learn.microsoft.com/en-us/training/paths/create-use-analvtics-reports-power-bi/

𝟰.𝗔𝘇𝘂𝗿𝗲 𝗰𝗼𝘀𝗺𝗼𝘀 𝗗𝗕
https://learn.microsoft.com/en-us/training/paths/create-use-analytics-reports-power-bi/

𝟱.𝗔𝗜 𝗳𝘂𝗻𝗱𝗮𝗺𝗲𝗻𝘁𝗮𝗹𝘀
https://learn.microsoft.com/en-us/training/paths/create-no-code-predictive-models-azure-machine-learning/
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sun, 27 Jul 2025 10:06:05 +0300
𝟲 𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 𝘁𝗵𝗲 𝗠𝗼𝘀𝘁 𝗜𝗻-𝗗𝗲𝗺𝗮𝗻𝗱 𝗧𝗲𝗰𝗵 𝗦𝗸𝗶𝗹𝗹𝘀😍

🚀 Want to future-proof your career without spending a single rupee?💵

These 6 free online courses from top institutions like Google, Harvard, IBM, Stanford, and Cisco will help you master high-demand tech skills in 2025 — from Data Analytics to Machine Learning📊🧑‍💻

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4fbDejW

Each course is beginner-friendly, comes with certification, and helps you build your resume or switch careers✅️
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sat, 26 Jul 2025 11:13:33 +0300
Understanding Popular ML Algorithms:

1️⃣ Linear Regression: Think of it as drawing a straight line through data points to predict future outcomes.

2️⃣ Logistic Regression: Like a yes/no machine - it predicts the likelihood of something happening or not.

3️⃣ Decision Trees: Imagine making decisions by answering yes/no questions, leading to a conclusion.

4️⃣ Random Forest: It's like a group of decision trees working together, making more accurate predictions.

5️⃣ Support Vector Machines (SVM): Visualize drawing lines to separate different types of things, like cats and dogs.

6️⃣ K-Nearest Neighbors (KNN): Friends sticking together - if most of your friends like something, chances are you'll like it too!

7️⃣ Neural Networks: Inspired by the brain, they learn patterns from examples - perfect for recognizing faces or understanding speech.

8️⃣ K-Means Clustering: Imagine sorting your socks by color without knowing how many colors there are - it groups similar things.

9️⃣ Principal Component Analysis (PCA): Simplifies complex data by focusing on what's important, like summarizing a long story with just a few key points.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

ENJOY LEARNING 👍👍
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Sat, 26 Jul 2025 08:16:41 +0300
🎓𝟱 𝗙𝗥𝗘𝗘 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗧𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗧𝗲𝗰𝗵 𝗖𝗮𝗿𝗲𝗲𝗿! 🚀

Upgrade your skills and earn industry-recognized certificates — 100% FREE!

✅ Big Data Analytics – https://pdlink.in/4nzRoza

✅ AI & ML – https://pdlink.in/401SWry

✅ Cloud Computing – https://pdlink.in/3U2sMkR

✅ Cyber Security – https://pdlink.in/4nzQaDQ

✅ Other Tech Courses – https://pdlink.in/4lIN673

🎯 Enroll Now & Get Certified for FREE
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Fri, 25 Jul 2025 10:23:34 +0300
Are you looking to become a machine learning engineer? The algorithm brought you to the right place! 📌

I created a free and comprehensive roadmap. Let's go through this thread and explore what you need to know to become an expert machine learning engineer:

Math & Statistics

Just like most other data roles, machine learning engineering starts with strong foundations from math, precisely linear algebra, probability and statistics.

Here are the probability units you will need to focus on:

Basic probability concepts statistics
Inferential statistics
Regression analysis
Experimental design and A/B testing Bayesian statistics
Calculus
Linear algebra

Python:

You can choose Python, R, Julia, or any other language, but Python is the most versatile and flexible language for machine learning.

Variables, data types, and basic operations
Control flow statements (e.g., if-else, loops)
Functions and modules
Error handling and exceptions
Basic data structures (e.g., lists, dictionaries, tuples)
Object-oriented programming concepts
Basic work with APIs
Detailed data structures and algorithmic thinking

Machine Learning Prerequisites:

Exploratory Data Analysis (EDA) with NumPy and Pandas
Basic data visualization techniques to visualize the variables and features.
Feature extraction
Feature engineering
Different types of encoding data

Machine Learning Fundamentals

Using scikit-learn library in combination with other Python libraries for:

Supervised Learning: (Linear Regression, K-Nearest Neighbors, Decision Trees)
Unsupervised Learning: (K-Means Clustering, Principal Component Analysis, Hierarchical Clustering)
Reinforcement Learning: (Q-Learning, Deep Q Network, Policy Gradients)

Solving two types of problems:
Regression
Classification

Neural Networks:
Neural networks are like computer brains that learn from examples, made up of layers of "neurons" that handle data. They learn without explicit instructions.

Types of Neural Networks:

Feedforward Neural Networks: Simplest form, with straight connections and no loops.
Convolutional Neural Networks (CNNs): Great for images, learning visual patterns.
Recurrent Neural Networks (RNNs): Good for sequences like text or time series, because they remember past information.

In Python, it’s the best to use TensorFlow and Keras libraries, as well as PyTorch, for deeper and more complex neural network systems.

Deep Learning:

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled.

Convolutional Neural Networks (CNNs)
Recurrent Neural Networks (RNNs)
Long Short-Term Memory Networks (LSTMs)
Generative Adversarial Networks (GANs)
Autoencoders
Deep Belief Networks (DBNs)
Transformer Models

Machine Learning Project Deployment

Machine learning engineers should also be able to dive into MLOps and project deployment. Here are the things that you should be familiar or skilled at:

Version Control for Data and Models
Automated Testing and Continuous Integration (CI)
Continuous Delivery and Deployment (CD)
Monitoring and Logging
Experiment Tracking and Management
Feature Stores
Data Pipeline and Workflow Orchestration
Infrastructure as Code (IaC)
Model Serving and APIs

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

Credits: https://t.me/datasciencefun

Like if you need similar content 😄👍

Hope this helps you 😊
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Fri, 25 Jul 2025 08:20:14 +0300
𝟯 𝗙𝗿𝗲𝗲 𝗦𝗤𝗟 𝗬𝗼𝘂𝗧𝘂𝗯𝗲 𝗣𝗹𝗮𝘆𝗹𝗶𝘀𝘁𝘀 𝗧𝗵𝗮𝘁 𝗪𝗶𝗹𝗹 𝗠𝗮𝗸𝗲 𝗬𝗼𝘂 𝗮 𝗤𝘂𝗲𝗿𝘆 𝗣𝗿𝗼 𝗶𝗻 𝟮𝟬𝟮𝟱😍

Still stuck Googling “What is SQL?” every time you start a new project?💵

You’re not alone. Many beginners bounce between tutorials without ever feeling confident writing SQL queries on their own.👨‍💻✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4f1F6LU

Let’s dive into the ones that are actually worth your time✅️
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 24 Jul 2025 10:25:53 +0300
Writing Python Lists
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Thu, 24 Jul 2025 08:49:45 +0300
𝟱 𝗥𝗲𝗮𝗹-𝗪𝗼𝗿𝗹𝗱 𝗧𝗲𝗰𝗵 𝗣𝗿𝗼𝗷𝗲𝗰𝘁𝘀 𝘁𝗼 𝗕𝘂𝗶𝗹𝗱 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 – 𝗪𝗶𝘁𝗵 𝗙𝘂𝗹𝗹 𝗧𝘂𝘁𝗼𝗿𝗶𝗮𝗹𝘀!😍

Are you ready to build real-world tech projects that don’t just look good on your resume, but actually teach you practical, job-ready skills?🧑‍💻📌

Here’s a curated list of 5 high-value development tutorials — covering everything from full-stack development and real-time chat apps to AI form builders and reinforcement learning✨️💻

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3UtCSLO

They’re real, portfolio-worthy projects you can start today✅️
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 23 Jul 2025 16:34:04 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Wed, 23 Jul 2025 07:45:17 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 22 Jul 2025 15:45:40 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 22 Jul 2025 15:45:40 +0300
Подробнее
]]>
https://linkbaza.com/catalog/-1001218627802 Tue, 22 Jul 2025 08:40:38 +0300
Подробнее
]]>