Join this channel to learn python for web development, data science, artificial intelligence and machine learning with quizzes, projects and amazing resources for free
For collaborations: @coderfun
Информация о канале обновлена 17.11.2025.
Join this channel to learn python for web development, data science, artificial intelligence and machine learning with quizzes, projects and amazing resources for free
For collaborations: @coderfun
Most people chase better algorithms. Professionals chase better features.
Because no matter how fancy your model is, if the data doesn’t speak the right language. it won’t learn anything meaningful.
🔍 So What Exactly Is Feature Engineering?
It’s not just cleaning data. It’s translating raw, messy reality into something your model can understand.
You’re basically asking:
“How can I represent the real world in numbers, without losing its meaning?”
Example:
➖ “Date of birth” → Age (time-based insight)
➖ “Text review” → Sentiment score (emotional signal)
➖ “Price” → log(price) (stabilized distribution)
Every transformation teaches your model how to see the world more clearly.
⚙️ Why It Matters More Than the Model
You can’t outsmart bad features.
A simple linear model trained on smartly engineered data will outperform a deep neural net trained on noise.
Kaggle winners know this. They spend 80% of their time creating and refining features not tuning hyperparameters.
Why? Because models don’t create intelligence, They extract it from what you feed them.
🧩 The Core Idea: Add Signal, Remove Noise
Feature engineering is about sculpting your data so patterns stand out.
You do that by:
✔️ Transforming data (scale, encode, log).
✔️ Creating new signals (ratios, lags, interactions).
✔️ Reducing redundancy (drop correlated or useless columns).
Every step should make learning easier not prettier.
⚠️ Beware of Data Leakage
Here’s the silent trap: using future information when building features.
For example, when predicting loan default, if you include “payment status after 90 days,” your model will look brilliant in training and fail in production.
Golden rule:
👉 A feature is valid only if it’s available at prediction time.
🧠 Think Like a Domain Expert
Anyone can code transformations.
But great data scientists understand context.
They ask:
❔What actually influences this outcome in real life?
❔How can I capture that influence as a feature?
When you merge domain intuition with technical precision, feature engineering becomes your superpower.
⚡️ Final Takeaway
The model is the student.
The features are the teacher.
And no matter how capable the student if the teacher explains things poorly, learning fails.
Feature engineering isn’t preprocessing. It’s the art of teaching your model how to understand the world.
Владелец канала не предоставил расширенную статистику, но Вы можете сделать ему запрос на ее получение.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Подтвердите, что вы не робот
Вы выполнили несколько запросов, и прежде чем продолжить, мы ходим убелиться в том, что они не автоматизированные.
Наш сайт использует cookie-файлы, чтобы сделать сервисы быстрее и удобнее.
Продолжая им пользоваться, вы принимаете условия
Пользовательского соглашения
и соглашаетесь со сбором cookie-файлов.
Подробности про обработку данных — в нашей
Политике обработки персональных данных.