🔓Unlock Your Coding Potential with ChatGPT
🚀 Your Ultimate Guide to Ace Coding Interviews!
💻 Coding tips, practice questions, and expert advice to land your dream tech job.
For Promotions: @love_data
Информация о канале обновлена 19.11.2025.
🔓Unlock Your Coding Potential with ChatGPT
🚀 Your Ultimate Guide to Ace Coding Interviews!
💻 Coding tips, practice questions, and expert advice to land your dream tech job.
For Promotions: @love_data
The program for the 10th AI Journey 2025 international conference has been unveiled: scientists, visionaries, and global AI practitioners will come together on one stage. Here, you will hear the voices of those who don't just believe in the future—they are creating it!
Speakers include visionaries Kai-Fu Lee and Chen Qufan, as well as dozens of global AI gurus from around the world!
On the first day of the conference, November 19, we will talk about how AI is already being used in various areas of life, helping to unlock human potential for the future and changing creative industries, and what impact it has on humans and on a sustainable future.
On November 20, we will focus on the role of AI in business and economic development and present technologies that will help businesses and developers be more effective by unlocking human potential.
On November 21, we will talk about how engineers and scientists are making scientific and technological breakthroughs and creating the future today!
Ride the wave with AI into the future!
Tune in to the AI Journey webcast on November 19-21.
The OpenAI team created an interpretable model which is much more transparent than typical transformers, behave like a "black box."
This is important because such a model helps understand why AI hallucinates, makes mistakes, or acts unpredictably in critical situations.
The new LLM is a sparse transformer: much smaller-simpler than modern LLMs (at level of GPT-1). but goal is not to compete, but to be as explainable as possible.
🟢 How it works?
- the model is trained so that internal circuits become sparse,
- most weights are fixed at 0,
- each neuron has not thousands of connections, but only dozens,
- skills are separated from each other by cleaner and more readable paths.
In usual dense models, neurons are connected chaotically, features overlap, and understanding the logic is difficult.
Here, for each behavior, a small circuit can be identified:
sufficient, because it performs the required function itself,
and necessary, because its removal breaks the behavior.
The main goal is to study how simple mechanisms work to better understand large models.
The interpretability metric here is circuit size,
the capability metric is pretraining loss.
As sparsity increases, capability drops slightly, and circuits become much simpler.
Training "large but sparse" models improves both metrics: the model becomes stronger, and the mechanisms easier to analyze.
Some complex skills, such as variables in code, are still partially understood, but even these circuits allow predicting when the model correctly reads or writes a type.
The main contribution of the work is a training recipe that creates mechanisms
that can be *named, drawn, and tested with ablations*,
rather than trying to untangle chaotic features post hoc.
LIMITS: these are small models and simple behaviors, and much remains outside the mapped chains.
This is an important step toward true interpretability of large AI.
1 - Machine Learning: Core algorithms, statistics, and model training techniques.
2 - Deep Learning: Hierarchical neural networks learning complex representations automatically.
3 - Neural Networks: Layered architectures efficiently model nonlinear relationships accurately.
4 - NLP: Techniques to process and understand natural language text.
5 - Computer Vision: Algorithms interpreting and analyzing visual data effectively
6 - Reinforcement Learning: Distributed traffic across multiple servers for reliability.
7 - Generative Models: Creating new data samples using learned data.
8 - LLM: Generates human-like text using massive pre-trained data.
9 - Transformers: Self-attention-based architecture powering modern AI models.
10 - Feature Engineering: Designing informative features to improve model performance significantly.
11 - Supervised Learning: Learns useful representations without labeled data.
12 - Bayesian Learning: Incorporate uncertainty using probabilistic model approaches.
13 - Prompt Engineering: Crafting effective inputs to guide generative model outputs.
14 - AI Agents: Autonomous systems that perceive, decide, and act.
15 - Fine-Tuning Models: Customizes pre-trained models for domain-specific tasks.
16 - Multimodal Models: Processes and generates across multiple data types like images, videos, and text.
17 - Embeddings: Transforms input into machine-readable vector formats.
18 - Vector Search: Finds similar items using dense vector embeddings.
19 - Model Evaluation: Assessing predictive performance using validation techniques.
20 - AI Infrastructure: Deploying scalable systems to support AI operations.
Artificial intelligence Resources: https://whatsapp.com/channel/0029VaoePz73bbV94yTh6V2E
AI Jobs: https://whatsapp.com/channel/0029VaxtmHsLikgJ2VtGbu1R
Hope this helps you ☺️
How To Write A Book With 12 Simple Prompts
✨
1. Bias - AI unfairly prefers some answers due to skewed training data, leading to unfair outcomes like in hiring algorithms.
2. Label - A tag or answer AI learns as correct, essential for supervised training.
3. Model - A program that learns patterns from data to make predictions or generate outputs.
4. Training - Feeding AI examples so it improves at tasks, like teaching it to recognize cats in photos.
5. Chatbot - AI that converses with users, powering tools like customer support bots.
6. Dataset - A collection of data AI trains on—quality matters for accurate results.
7. Algorithm - Step-by-step rules AI follows to process data and solve problems.
8. Token - Small units like words or subwords that AI models like GPT break text into.
9. Overfitting - When AI memorizes training data too well and flops on new, unseen info.
10. AI Agent - Autonomous software that performs tasks independently, like booking meetings.
11. AI Ethics - Guidelines for responsible AI use, focusing on fairness and avoiding harm.
12. Explainability - How well you can understand why AI made a certain decision.
13. Inference - AI applying what it learned to new data, like generating a response.
14. Turing Test - A benchmark to see if AI can mimic human conversation convincingly.
15. Prompt - The input or question you give AI to guide its output.
16. Fine-Tuning - Tweaking a pre-trained model for specific tasks, like customizing for legal docs.
17. Generative AI - AI that creates new content, from text to images (think DALL-E).
18. AI Automation - Using AI to handle repetitive tasks without human input.
19. Neural Network - AI structure mimicking the brain's neurons for pattern recognition.
20. Computer Vision - AI "seeing" and analyzing images or videos, like facial recognition.
21. Transfer Learning - Reusing a model trained on one task for a related new one.
22. Guardrails (in AI) - Safety features to prevent harmful or incorrect outputs.
23. Open Source AI - Freely available AI code anyone can modify and build on.
24. Deep Learning - Advanced neural networks with many layers for complex tasks.
25. Reinforcement Learning - AI improving through trial-and-error rewards, like game-playing bots.
26. Hallucination (in AI) - When AI confidently spits out false info.
27. Zero-shot Learning - AI tackling new tasks without specific training examples.
28. Speech Recognition - AI converting spoken words to text, powering voice assistants.
29. Supervised Learning - AI trained on labeled data to predict outcomes.
30. Model Context Protocol - Standards for how AI handles and shares context in conversations.
31. Machine Learning - AI subset where systems learn from data without explicit programming.
32. Artificial Intelligence (AI) - Tech enabling machines to perform human-like tasks.
33. Unsupervised Learning - AI finding hidden patterns in unlabeled data.
34. LLM (Large Language Model) - Massive AI for understanding and generating human-like text.
35. ASI (Artificial Superintelligence) - Hypothetical AI surpassing human intelligence in all areas.
36. GPU (Graphics Processing Unit) - Hardware accelerating AI training with parallel processing.
37. Natural Language Processing (NLP) - AI handling human language, from translation to sentiment analysis.
38. AGI (Artificial General Intelligence) - AI matching human versatility across any intellectual task.
39. GPT (Generative Pretrained Transformer) - Architecture behind models like ChatGPT for natural text generation.
40. API (Application Programming Interface) - Bridge letting apps access AI features seamlessly.
Double Tap ❤️ if you learned something new!
Double Tap ❤️ For More ChatGPT Usecases
🚀 7 free AI courses by NVIDIA 👇
1. Generative AI Explained
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-07+V1
2. LLM with RAG Model
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-FX-16+V1
3. Building Video AI Apps
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-IV-02+V2
4. AI on Jetson Nano
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+S-RX-02+V2
5. Digital Fingerprinting
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+T-DS-02+V2
6. Introduction to CUDA
https://learn.nvidia.com/courses/course-detail?course_id=course-v1:DLI+T-AC-01+V1
7. Building RAG Agents with LLMs
https://resources.nvidia.com/en-us-ai-large-language-models/building-rag-agents-with-llms-dli-course
React with ❤️ if you like this :)
🧠 Must-Know Concepts for Every Developer 🧰💡
❯ Data Structures & Algorithms
⦁ Arrays, Linked Lists, Stacks, Queues
⦁ Trees, Graphs, Hashmaps
⦁ Sorting & Searching algorithms
⦁ Time & Space Complexity (Big O)
❯ Operating Systems Basics
⦁ Processes vs Threads
⦁ Memory Management
⦁ File Systems
⦁ OS concepts like Deadlock, Scheduling
❯ Networking Essentials
⦁ HTTP / HTTPS
⦁ DNS, IP, TCP/IP
⦁ RESTful APIs
⦁ WebSockets for real-time apps
❯ Security Fundamentals
⦁ Encryption (SSL/TLS)
⦁ Authentication vs Authorization
⦁ OWASP Top 10
⦁ Secure coding practices
❯ System Design
⦁ Scalability & Load Balancing
⦁ Caching (Redis, CDN)
⦁ Database Sharding & Replication
⦁ Message Queues (RabbitMQ, Kafka)
❯ Version Control
⦁ Git basics: clone, commit, push, pull
⦁ Branching strategies
⦁ Merge conflicts & resolutions
❯ Debugging & Logging
⦁ Print debugging & breakpoints
⦁ Logging libraries (log4j, logging)
⦁ Error tracking tools (Sentry, Rollbar)
❯ Code Quality & Maintenance
⦁ Clean code principles
⦁ Design patterns (Singleton, Observer, etc.)
⦁ Code reviews & refactoring
⦁ Writing unit tests
💬 Tap ❤️ for more!
Prompt:
Minimalist paint-style outline of a [subject], flowing black lines, clean composition, simple yet dramatic pose, fluid movement captured with elegant negative space, expressive and graceful silhouette
✅
🟢 Beginner Level
⦁ Spam Email Classifier
⦁ Handwritten Digit Recognition (MNIST)
⦁ Rock-Paper-Scissors AI Game
⦁ Chatbot using Rule-Based Logic
⦁ AI Tic-Tac-Toe Game
🟡 Intermediate Level
⦁ Face Detection & Emotion Recognition
⦁ Voice Assistant with Speech Recognition
⦁ Language Translator (using NLP models)
⦁ AI-Powered Resume Screener
⦁ Smart Virtual Keyboard (predictive typing)
🔴 Advanced Level
⦁ Self-Learning Game Agent (Reinforcement Learning)
⦁ AI Stock Trading Bot
⦁ Deepfake Video Generator (Ethical Use Only)
⦁ Autonomous Car Simulation (OpenCV + RL)
⦁ Medical Diagnosis using Deep Learning (X-ray/CT analysis)
💬 Double Tap ❤️ for more! 💡🧠
🚀 AI Journey Contest 2025: Test your AI skills!
Join our international online AI competition. Register now for the contest! Award fund — RUB 6.5 mln!
Choose your track:
· 🤖 Agent-as-Judge — build a universal “judge” to evaluate AI-generated texts.
· 🧠 Human-centered AI Assistant — develop a personalized assistant based on GigaChat that mimics human behavior and anticipates preferences. Participants will receive API tokens and a chance to get an additional 1M tokens.
· 💾 GigaMemory — design a long-term memory mechanism for LLMs so the assistant can remember and use important facts in dialogue.
Why Join
Level up your skills, add a strong line to your resume, tackle pro-level tasks, compete for an award, and get an opportunity to showcase your work at AI Journey, a leading international AI conference.
How to Join
1. Register here.
2. Choose your track.
3. Create your solution and submit it by 30 October 2025.
🚀 Ready for a challenge? Join a global developer community and show your AI skills!
Владелец канала не предоставил расширенную статистику, но Вы можете сделать ему запрос на ее получение.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Подтвердите, что вы не робот
Вы выполнили несколько запросов, и прежде чем продолжить, мы ходим убелиться в том, что они не автоматизированные.
Наш сайт использует cookie-файлы, чтобы сделать сервисы быстрее и удобнее.
Продолжая им пользоваться, вы принимаете условия
Пользовательского соглашения
и соглашаетесь со сбором cookie-файлов.
Подробности про обработку данных — в нашей
Политике обработки персональных данных.