Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.
Вопросы - @notxxx1
@itchannels_telegram -🔥лучшие it каналы
РКН: clck.ru/3FmwRz
Информация о канале обновлена 17.11.2025.
Разбираем вопросы с собеседований по Machine Learning, Data Science, Deep Learning и Нейронным сетям, Python.
Вопросы - @notxxx1
@itchannels_telegram -🔥лучшие it каналы
РКН: clck.ru/3FmwRz
🧠 Почему у моделей пропадает «рандомность» во время RL-обучения - и как это чинится
Новая работа разбирает, почему у моделей во время RL для reasoning рушится энтропия (то есть исчезает разнообразие ответов) - и что с этим делать.
Главные выводы:
- 📉 Хорошего набора в ~600 задач хватает, чтобы догнать обучение на 17 000.
Ключ - разнообразие, а не размер датасета.
- 🎯 Reward сужает модель.
При обучении она начинает повторять несколько самых “прибыльных” токенов → энтропия падает → исследование ухудшается.
- 🔄 Меньше энтропии → меньше разнообразия, но измеренная энтропия по промптам почти не коррелирует с точностью.
- ⚙️ Адаптивный энтропийный регуляризатор удерживает «случайность» на целевом уровне, при этом точность продолжает расти.
- 🧪 Off-policy обновления усиливают коллапс, поднимают reward и ломают обобщение — классический overfitting.
- 🧩 Низкое разнообразие данных ускоряет коллапс, но маленький *разнообразный* датасет иногда работает так же хорошо, как полный.
- 🔧 Клиппинг и reweighting позитивных advantage-токенов (например, Progressive Advantage Reweighting) помогают управлять энтропией и борот
arxiv.org/abs/2511.05993
Подборка полезных ресурсов для программистов.
Здесь ты найдёшь всё это - коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!
AI: t.me/ai_machinelearning_big_data
Python: t.me/pythonl
Linux: t.me/linuxacademiya
Devops: t.me/DevOPSitsec
Собеседования DS: t.me/machinelearning_interview
C++ t.me/cpluspluc
Docker: t.me/DevopsDocker
Хакинг: t.me/linuxkalii
Data Science: t.me/data_analysis_ml
Javascript: t.me/javascriptv
C#: t.me/csharp_1001_notes
Java: t.me/java_library
Базы данных: t.me/sqlhub
Python собеседования: t.me/python_job_interview
Мобильная разработка: t.me/mobdevelop
Golang: t.me/Golang_google
React: t.me/react_tg
Rust: t.me/rust_code
ИИ: t.me/vistehno
PHP: t.me/phpshka
Android: t.me/android_its
Frontend: t.me/front
Big Data: t.me/bigdatai
МАТЕМАТИКА: t.me/data_math
Kubernets: t.me/kubernetc
Разработка игр: https://t.me/gamedev
Haskell: t.me/haskell_tg
Физика: t.me/fizmat
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
Папка ML: https://t.me/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://t.me/addlist/mzMMG3RPZhY2M2Iy
Папка Linux:https://t.me/addlist/w4Doot-XBG4xNzYy
😆ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: t.me/english_forprogrammers
🧠ИИ: t.me/vistehno
🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://t.me/addlist/BkskQciUW_FhNjEy
Сохрани себе, чтобы не потерять!
🧭 LinkedIn запускает новую систему поиска людей на базе ИИ — для всех своих 1.3 млрд пользователей.
Как это работает:
- ИИ переводит обычный запрос в связанные навыки и области.
Например, запрос *«curing cancer»* найдёт не только учёных, но и экспертов в онкологии и геномике — и при этом учитывает, насколько человек достижим в вашей сети.
Как обучали:
- Команда вручную собрала “золотой” набор из нескольких сотен–тысяч пар «запрос–профиль».
- На нём сгенерировали синтетические данные и обучили 7B модель-судью.
- Затем дистиллировали её в 1.7B учителя релевантности и отдельных учителей для пользовательских действий (connect, follow).
- Итоговая модель обучалась на мягких оценках через KL-дивергенцию.
Как устроен поиск:
- Первый этап — широкая выборка с помощью 8B модели.
- Второй — компактный ранкер, который обеспечивает точность и при этом дешёв в продакшене.
- Ранкер ужали с 440M до 220M параметров с потерей менее 1% качества — это позволило держать систему дешёвой на таком масштабе.
Технические решения:
- Индексацию пришлось перенести с CPU на GPU — граф людей ведёт себя иначе, чем поиск вакансий.
- RL-сжатие контекста уменьшает ввод почти в 20 раз, а связка ранкера и сжатия даёт ускорение в 10 раз.
- Отдельный LLM-router решает, использовать ли семантический стек или откатиться к классическому лексическому поиску.
Источник: venturebeat.com/ai/inside-linkedins-generative-ai-cookbook-how-it-scaled-people-search-to-1-3
🤖 Хочешь построить своего ИИ-агента? Вот ВСЁ, что нужно!
Один энтузиаст собрал все ресурсы для старта:
📺 видео,
📚 книги и статьи,
🛠️ GitHub-репозитории,
🎓 курсы от Google, OpenAI, Anthropic и других.
Темы:
- LLM (большие языковые модели)
- агенты
- memory/control/planning (MCP)
💡 Всё бесплатно и в одном Google Docs 👉
https://docs.google.com/document/d/1Z5SX89FV6bTy2KKnGGb61xCcS9iPg_fv2USQYi4Wc3g/mobilebasic
Приходите на день открытых дверей ИТ-магистратуры Центрального университета — разберем все важные вопросы, которые помогут принять правильное решение.
О чем будем говорить:
→ Как создаются программы магистратуры в ЦУ, что такое продуктовый подход в высшем образовании и как это делает выпускников реально востребованными на рынке
→ Как университет помогает студентам строить карьеру: от менторства до трудоустройства в топовые компании
→ Какие направления есть в ЦУ и как выбрать то, что приведет к вашим карьерным целям
→ Реальные истории студентов: как они поступали, учились и куда пошли работать
Спикеры — практики с опытом в Google, Яндексе, Т-Банке и Visa, которые сейчас отвечают за образовательный опыт студентов ЦУ.
Когда:
Очно 18 ноября с 19:30 до 21:00 (в Москве с экскурсией по кампусу ЦУ).
Регистрируйся по ссылке!
Реклама. АНО ВО "Центральный университет", ИНН 7743418023, erid: 2RanykNYxHY
Оценки компаний становятся просто невероятными.
Mira Murati ведёт ранние переговоры о новом раунде инвестиций - по оценке около $50 млрд. Это в 4 раза больше, чем всего четыре месяца назад.
В июле её стартап уже объявил один из крупнейших сид-раундов в истории, привлекая $2 млрд при оценке $12 млрд.
Теперь разговор идёт о пятидесяти.
Безумие.
https://www.bloomberg.com/news/articles/2025-11-13/murati-s-thinking-machines-in-funding-talks-at-50-billion-value
Владелец канала не предоставил расширенную статистику, но Вы можете сделать ему запрос на ее получение.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Подтвердите, что вы не робот
Вы выполнили несколько запросов, и прежде чем продолжить, мы ходим убелиться в том, что они не автоматизированные.
Наш сайт использует cookie-файлы, чтобы сделать сервисы быстрее и удобнее.
Продолжая им пользоваться, вы принимаете условия
Пользовательского соглашения
и соглашаетесь со сбором cookie-файлов.
Подробности про обработку данных — в нашей
Политике обработки персональных данных.