Perfect channel to learn Data Analytics
Learn SQL, Python, Alteryx, Tableau, Power BI and many more
For Promotions: @coderfun
Информация о канале обновлена 07.10.2025.
Perfect channel to learn Data Analytics
Learn SQL, Python, Alteryx, Tableau, Power BI and many more
For Promotions: @coderfun
✅ How to Get a Data Analyst Job as a Fresher in 2025 📊💼
🔹 What’s the Market Like in 2025?
• High demand in BFSI, healthcare, retail & tech
• Companies expect Excel, SQL, BI tools & storytelling skills
• Python & data visualization give a strong edge
• Remote jobs are fewer, but freelance & internship opportunities are growing
🔹 Skills You MUST Have:
1️⃣ Excel – Pivot tables, formulas, dashboards
2️⃣ SQL – Joins, subqueries, CTEs, window functions
3️⃣ Power BI / Tableau – For interactive dashboards
4️⃣ Python – Data cleaning & analysis (Pandas, Matplotlib)
5️⃣ Statistics – Mean, median, correlation, hypothesis testing
6️⃣ Business Understanding – KPIs, revenue, churn etc.
🔹 Build a Strong Profile:
✔️ Do real-world projects (sales, HR, e-commerce data)
✔️ Publish dashboards on Tableau Public / Power BI
✔️ Share work on GitHub & LinkedIn
✔️ Earn certifications (Google Data Analytics, Power BI, SQL)
✔️ Practice mock interviews & case studies
🔹 Practice Platforms:
• Kaggle
• StrataScratch
• DataLemur
🔹 Fresher-Friendly Job Titles:
• Junior Data Analyst
• Business Analyst
• MIS Executive
• Reporting Analyst
🔹 Companies Hiring Freshers in 2025:
• TCS
• Infosys
• Wipro
• Cognizant
• Fractal Analytics
• EY, KPMG
• Startups & EdTech companies
📝 Tip: If a job says "1–2 yrs experience", apply anyway if your skills & projects match!
👍 Tap ❤️ if you found this helpful!
✅ Step-by-Step Approach to Learn Data Analytics 📈🧠
➊ Excel Fundamentals:
✔ Master formulas, pivot tables, data validation, charts, and graphs.
➋ SQL Basics:
✔ Learn to query databases, use SELECT, FROM, WHERE, JOIN, GROUP BY, and aggregate functions.
➌ Data Visualization:
✔ Get proficient with tools like Tableau or Power BI to create insightful dashboards.
➍ Statistical Concepts:
✔ Understand descriptive statistics (mean, median, mode), distributions, and hypothesis testing.
➎ Data Cleaning & Preprocessing:
✔ Learn how to handle missing data, outliers, and data inconsistencies.
➏ Exploratory Data Analysis (EDA):
✔ Explore datasets, identify patterns, and formulate hypotheses.
➐ Python for Data Analysis (Optional but Recommended):
✔ Learn Pandas and NumPy for data manipulation and analysis.
➑ Real-World Projects:
✔ Analyze datasets from Kaggle, UCI Machine Learning Repository, or your own collection.
➒ Business Acumen:
✔ Understand key business metrics and how data insights impact business decisions.
➓ Build a Portfolio:
✔ Showcase your projects on GitHub, Tableau Public, or a personal website. Highlight the impact of your analysis.
👍 Tap ❤️ for more!
Don't aim for this:
Excel - 100%
SQL - 0%
PowerBI/Tableau - 0%
Python/R - 0%
Aim for this:
Excel - 25%
SQL - 25%
PowerBI/Tableau - 25%
Python/R - 25%
You don't need to know everything straight away.
😄👇
Python Topics:
Python Resources - @pythonanalyst
1. Data Structures
- Lists, Tuples, and Dictionaries
- NumPy Arrays for numerical data
2. Data Manipulation
- Pandas DataFrames for structured data
- Data Cleaning and Preprocessing techniques
- Data Transformation and Reshaping
3. Data Visualization
- Matplotlib for basic plotting
- Seaborn for statistical visualizations
- Plotly for interactive charts
4. Statistical Analysis
- Descriptive Statistics
- Hypothesis Testing
- Regression Analysis
5. Machine Learning
- Scikit-Learn for machine learning models
- Model Building, Training, and Evaluation
- Feature Engineering and Selection
6. Time Series Analysis
- Handling Time Series Data
- Time Series Forecasting
- Anomaly Detection
7. Python Fundamentals
- Control Flow (if statements, loops)
- Functions and Modular Code
- Exception Handling
- File
SQL Topics:
SQL Resources - @sqlanalyst
1. SQL Basics
- SQL Syntax
- SELECT Queries
- Filters
2. Data Retrieval
- Aggregation Functions (SUM, AVG, COUNT)
- GROUP BY
3. Data Filtering
- WHERE Clause
- ORDER BY
4. Data Joins
- JOIN Operations
- Subqueries
5. Advanced SQL
- Window Functions
- Indexing
- Performance Optimization
6. Database Management
- Connecting to Databases
- SQLAlchemy
7. Database Design
- Data Types
- Normalization
Remember, it's highly likely that you won't know all these concepts from the start. Data analysis is a journey where the more you learn, the more you grow. Embrace the learning process, and your skills will continually evolve and expand. Keep up the great work!
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
✅ Complete Data Analyst Interview Roadmap – What You MUST Know 📊💼
🔰 1. Data Analysis Fundamentals:
• Statistical Concepts: Mean, median, mode, standard deviation, variance, distributions (normal, binomial), hypothesis testing.
• Experimental Design: A/B testing, control groups, statistical significance.
• Data Visualization Principles: Choosing the right chart type, effective dashboard design, data storytelling.
📚 2. Technical Skills Mastery:
• SQL:
• SELECT, FROM, WHERE clauses
• JOINs (INNER, LEFT, RIGHT, FULL OUTER)
• Aggregate functions (COUNT, SUM, AVG, MIN, MAX)
• GROUP BY and HAVING
• Window functions (RANK, ROW_NUMBER)
• Subqueries
• Excel:
• Pivot tables
• VLOOKUP, INDEX/MATCH
• Conditional formatting
• Data validation
• Charts and graphs
• Data Visualization Tools (choose at least one):
• Tableau
• Power BI
• Programming (Python or R - optional but highly valued):
• Data manipulation with Pandas (Python) or dplyr (R)
• Data visualization with Matplotlib, Seaborn (Python) or ggplot2 (R)
⚙️ 3. Data Wrangling and Cleaning:
• Handling Missing Data: Imputation techniques
• Data Transformation: Normalization, scaling
• Outlier Detection and Treatment
• Data Type Conversion
• Data Validation Techniques
💬 4. Problem-Solving Practice:
• Case Studies: Practice solving real-world business problems using data.
• Examples: Customer churn analysis, sales trend forecasting, marketing campaign optimization.
• Estimation Questions: Practice making reasonable estimates when data is limited.
💡 5. Business Acumen:
• Understand key business metrics (e.g., revenue, profit, customer lifetime value).
• Be able to connect data insights to business outcomes.
• Demonstrate an understanding of the industry you're interviewing for.
🧠 6. Communication Skills:
• Be able to clearly and concisely explain your findings to both technical and non-technical audiences.
• Practice presenting data in a visually compelling way.
• Be prepared to answer behavioral questions about your teamwork and problem-solving abilities.
📝 7. Resume and Portfolio:
• Highlight relevant skills and experience.
• Showcase your projects with clear descriptions and quantifiable results.
• Include links to your GitHub, Tableau Public profile, or personal website.
🔄 8. Mock Interviews and Feedback:
• Practice with friends, mentors, or online platforms.
• Focus on both technical proficiency and communication skills.
• Seek feedback on your approach and presentation.
🎯 Tips:
• Focus on demonstrating your ability to solve real-world business problems with data.
• Be prepared to explain your thought process and justify your choices.
• Show enthusiasm for data and a desire to learn.
👍 Tap ❤️ if you found this helpful!
Владелец канала не предоставил расширенную статистику, но Вы можете сделать ему запрос на ее получение.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Подтвердите, что вы не робот
Вы выполнили несколько запросов, и прежде чем продолжить, мы ходим убелиться в том, что они не автоматизированные.