Perfect channel for Data analyst
Learn Sql, Python, Alteryx, Tableau and many more
Buy ads: https://telega.io/c/sqlspecialist
Информация о канале обновлена 23.08.2025.
Perfect channel for Data analyst
Learn Sql, Python, Alteryx, Tableau and many more
Buy ads: https://telega.io/c/sqlspecialist
❤️
I’m launching a Python Projects Series — designed for beginners to those preparing for technical interviews or building real-world projects.
This will be a step-by-step, hands-on journey — where you’ll build useful Python projects with clear code, explanations, and mini-quizzes!
Here’s what we’ll cover:
🔹 Week 1: Python Mini Projects (Daily Practice)
⦁ Calculator
⦁ To-Do List (CLI)
⦁ Number Guessing Game
⦁ Unit Converter
⦁ Digital Clock
🔹 Week 2: Data Handling & APIs
⦁ Read/Write CSV & Excel files
⦁ JSON parsing
⦁ API Calls using Requests
⦁ Weather App using OpenWeather API
⦁ Currency Converter using Real-time API
🔹 Week 3: Automation with Python
⦁ File Organizer Script
⦁ Email Sender
⦁ WhatsApp Automation
⦁ PDF Merger
⦁ Excel Report Generator
🔹 Week 4: Data Analysis with Pandas & Matplotlib
⦁ Load & Clean CSV
⦁ Data Aggregation
⦁ Data Visualization
⦁ Trend Analysis
⦁ Dashboard Basics
🔹 Week 5: AI & ML Projects (Beginner Friendly)
⦁ Predict House Prices
⦁ Email Spam Classifier
⦁ Sentiment Analysis
⦁ Image Classification (Intro)
⦁ Basic Chatbot
📌 Each project includes:
✅ Problem Statement
✅ Code with explanation
✅ Sample input/output
✅ Learning outcome
✅ Mini quiz
💬 React ❤️ if you're ready to build some projects together!
You can access it for free here
👇👇
https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L
Let’s Build. Let’s Grow. 💻🙌
The Shift in Data Analyst Roles: What You Should Apply for in 2025
The traditional “Data Analyst” title is gradually declining in demand in 2025 not because data is any less important, but because companies are getting more specific in what they’re looking for.
Today, many roles that were once grouped under “Data Analyst” are now split into more domain-focused titles, depending on the team or function they support.
Here are some roles gaining traction:
* Business Analyst
* Product Analyst
* Growth Analyst
* Marketing Analyst
* Financial Analyst
* Operations Analyst
* Risk Analyst
* Fraud Analyst
* Healthcare Analyst
* Technical Analyst
* Business Intelligence Analyst
* Decision Support Analyst
* Power BI Developer
* Tableau Developer
Focus on the skillsets and business context these roles demand.
Whether you're starting out or transitioning, look beyond "Data Analyst" and align your profile with industry-specific roles. It’s not about the title—it’s about the value you bring to a team.
𝗕𝗲𝗰𝗼𝗺𝗲 𝗮 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝘁 𝗜𝗻 𝗧𝗼𝗽 𝗠𝗡𝗖𝘀😍
Learn Data Analytics, Data Science & AI From Top Data Experts
Curriculum designed and taught by Alumni from IITs & Leading Tech Companies.
𝗛𝗶𝗴𝗵𝗹𝗶𝗴𝗵𝘁𝗲𝘀:-
- 12.65 Lakhs Highest Salary
- 500+ Partner Companies
- 100% Job Assistance
- 5.7 LPA Average Salary
𝗕𝗼𝗼𝗸 𝗮 𝗙𝗥𝗘𝗘 𝗗𝗲𝗺𝗼👇:-
𝗢𝗻𝗹𝗶𝗻𝗲 :- https://pdlink.in/4fdWxJB
𝗛𝘆𝗱𝗲𝗿𝗮𝗯𝗮𝗱 :- https://pdlink.in/4kFhjn3
𝗣𝘂𝗻𝗲 :- https://pdlink.in/45p4GrC
( Hurry Up 🏃♂️Limited Slots )
☑️
41. How do you handle categorical data?
Use encoding techniques like one-hot encoding (pd.get_dummies()
), label encoding, or ordinal encoding to convert categories into numeric values.
42. Explain the difference between deep copy and shallow copy.
⦁ Shallow copy copies an object but references nested objects.
⦁ Deep copy copies everything recursively, creating independent objects.
43. What is the use of the enumerate()
function?
Adds a counter to an iterable, yielding pairs (index, value)
great for loops when you need the item index as well.
44. How do you detect and handle multicollinearity?
Use correlation matrix or Variance Inflation Factor (VIF). Handle by removing or combining correlated features.
45. How can you improve Python script performance?
Use efficient data structures, built-in functions, vectorized operations with NumPy/Pandas, and profile code to identify bottlenecks.
46. What are Python’s built-in data structures?
List, Tuple, Set, Dictionary, String.
47. How do you automate repetitive data tasks with Python?
Write scripts or use task schedulers (like cron/Windows Task Scheduler) with libraries such as pandas
, openpyxl
, and automation tools.
48. Explain the use of Assertions in Python.
Used for debugging by asserting conditions that must be true, raising errors if violated:
assert x > 0, "x must be positive"
49. How do you write unit tests in Python?
Use unittest
or pytest
frameworks to write test functions/classes that verify code behavior automatically.
50. How do you handle large datasets in Python?
Use chunking with Pandas read_csv(chunk_size=…)
, Dask for parallel computing, or databases to process data in parts rather than all at once.
Python Interview Questions: https://t.me/sqlspecialist/2220
React ♥️ if this helped you
✅
31. What are the differences between Python 2 and Python 3?
Python 3 introduced many improvements: print is a function (print()
), better Unicode support, integer division changes, and removed deprecated features. Python 2 is now end-of-life.
32. How do you use regular expressions in Python?
With the re
module, e.g., re.search()
, re.findall()
. They help match, search, or replace patterns in strings.
33. What is the purpose of the with
statement?
Manages resources like file opening/closing automatically ensuring cleanup, e.g.,
with open('file.txt') as f:
data = f.read()
34. Explain how to use virtual environments.
Isolate project dependencies using venv
or virtualenv
to avoid conflicts between package versions across projects.
35. How do you connect Python with SQL databases?
Using libraries like sqlite3
, SQLAlchemy
, or pymysql
to execute SQL queries and fetch results into Python.
36. What is the role of the __init__.py
file?
Marks a directory as a Python package and can initialize package-level code.
37. How do you handle JSON data in Python?
Use json
module: json.load()
to parse JSON files and json.dumps()
to serialize Python objects to JSON.
38. What are generator functions and why use them?
Functions that yield values one at a time using yield
, saving memory by lazy evaluation, ideal for large datasets.
39. How do you perform feature engineering with Python?
Create or transform variables using Pandas (e.g., creating dummy variables, extracting date parts), normalization, or combining features.
40. What is the purpose of the Pandas .pivot_table()
method?
Creates spreadsheet-style pivot tables for summarizing data, allowing aggregation by multiple indices.
Double Tap ❤️ for Part-5
𝟳 𝗠𝘂𝘀𝘁-𝗛𝗮𝘃𝗲 𝗦𝗸𝗶𝗹𝗹𝘀 𝘁𝗼 𝗟𝗮𝗻𝗱 𝗮 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍
Want to land a career in data analytics? 📊💥
It’s not about stacking degrees anymore—it’s about mastering in-demand skills that make you stand out in a competitive job market🧑💻📌
𝐋𝐢𝐧𝐤👇:-
http://pdlink.in/3Uxh5TR
Start small, practice every day, and add these skills to your portfolio✅️
Владелец канала не предоставил расширенную статистику, но Вы можете сделать ему запрос на ее получение.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Подтвердите, что вы не робот
Вы выполнили несколько запросов, и прежде чем продолжить, мы ходим убелиться в том, что они не автоматизированные.