Perfect channel for Data Scientists
Learn Python, R and many more
Admin @guideishere12
Buy ads: https://telega.io/c/pythonspecialist
Информация о канале обновлена 05.10.2025.
Perfect channel for Data Scientists
Learn Python, R and many more
Admin @guideishere12
Buy ads: https://telega.io/c/pythonspecialist
📱🤖
𝟭. Prompt Engineering Basics:
https://skillbuilder.aws/search?searchText=foundations-of-prompt-engineering&showRedirectNotFoundBanner=true
𝟮. ChatGPT Prompts Mastery:
https://deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/
𝟯. Intro to Generative AI:
https://cloudskillsboost.google/course_templates/536
𝟰. AI Introduction by Harvard:
https://pll.harvard.edu/course/cs50s-introduction-artificial-intelligence-python/2023-05
𝟱. Microsoft GenAI Basics:
https://linkedin.com/learning/what-is-generative-ai/generative-ai-is-a-tool-in-service-of-humanity
𝟲. Prompt Engineering Pro:
https://learnprompting.org
𝟳. Google’s Ethical AI:
https://cloudskillsboost.google/course_templates/554
𝟴. Harvard Machine Learning:
https://pll.harvard.edu/course/data-science-machine-learning
𝟵. LangChain App Developer:
https://deeplearning.ai/short-courses/langchain-for-llm-application-development/
𝟭𝟬. Bing Chat Applications:
https://linkedin.com/learning/streamlining-your-work-with-microsoft-bing-chat
𝟭𝟭. Generative AI by Microsoft:
https://learn.microsoft.com/en-us/training/paths/introduction-to-ai-on-azure/
𝟭𝟮. Amazon’s AI Strategy:
https://skillbuilder.aws/search?searchText=generative-ai-learning-plan-for-decision-makers&showRedirectNotFoundBanner=true
𝟭𝟯. GenAI for Everyone:
https://deeplearning.ai/courses/generative-ai-for-everyone/
React ♥️ for more
Data Science Roadmap
|
|-- Fundamentals
| |-- Mathematics
| | |-- Linear Algebra
| | |-- Calculus
| | |-- Probability and Statistics
| |
| |-- Programming
| | |-- Python
| | |-- R
| | |-- SQL
|
|-- Data Collection and Cleaning
| |-- Data Sources
| | |-- APIs
| | |-- Web Scraping
| | |-- Databases
| |
| |-- Data Cleaning
| | |-- Missing Values
| | |-- Data Transformation
| | |-- Data Normalization
|
|-- Data Analysis
| |-- Exploratory Data Analysis (EDA)
| | |-- Descriptive Statistics
| | |-- Data Visualization
| | |-- Hypothesis Testing
| |
| |-- Data Wrangling
| | |-- Pandas
| | |-- NumPy
| | |-- dplyr (R)
|
|-- Machine Learning
| |-- Supervised Learning
| | |-- Regression
| | |-- Classification
| |
| |-- Unsupervised Learning
| | |-- Clustering
| | |-- Dimensionality Reduction
| |
| |-- Reinforcement Learning
| | |-- Q-Learning
| | |-- Policy Gradient Methods
| |
| |-- Model Evaluation
| | |-- Cross-Validation
| | |-- Performance Metrics
| | |-- Hyperparameter Tuning
|
|-- Deep Learning
| |-- Neural Networks
| | |-- Feedforward Networks
| | |-- Backpropagation
| |
| |-- Advanced Architectures
| | |-- Convolutional Neural Networks (CNN)
| | |-- Recurrent Neural Networks (RNN)
| | |-- Transformers
| |
| |-- Tools and Frameworks
| | |-- TensorFlow
| | |-- PyTorch
|
|-- Natural Language Processing (NLP)
| |-- Text Preprocessing
| | |-- Tokenization
| | |-- Stop Words Removal
| | |-- Stemming and Lemmatization
| |
| |-- NLP Techniques
| | |-- Word Embeddings
| | |-- Sentiment Analysis
| | |-- Named Entity Recognition (NER)
|
|-- Data Visualization
| |-- Basic Plotting
| | |-- Matplotlib
| | |-- Seaborn
| | |-- ggplot2 (R)
| |
| |-- Interactive Visualization
| | |-- Plotly
| | |-- Bokeh
| | |-- Dash
|
|-- Big Data
| |-- Tools and Frameworks
| | |-- Hadoop
| | |-- Spark
| |
| |-- NoSQL Databases
| |-- MongoDB
| |-- Cassandra
|
|-- Cloud Computing
| |-- Cloud Platforms
| | |-- AWS
| | |-- Google Cloud
| | |-- Azure
| |
| |-- Data Services
| |-- Data Storage (S3, Google Cloud Storage)
| |-- Data Pipelines (Dataflow, AWS Data Pipeline)
|
|-- Model Deployment
| |-- Serving Models
| | |-- Flask/Django
| | |-- FastAPI
| |
| |-- Model Monitoring
| |-- Performance Tracking
| |-- A/B Testing
|
|-- Domain Knowledge
| |-- Industry-Specific Applications
| | |-- Finance
| | |-- Healthcare
| | |-- Retail
|
|-- Ethical and Responsible AI
| |-- Bias and Fairness
| |-- Privacy and Security
| |-- Interpretability and Explainability
|
|-- Communication and Storytelling
| |-- Reporting
| |-- Dashboarding
| |-- Presentation Skills
|
|-- Advanced Topics
| |-- Time Series Analysis
| |-- Anomaly Detection
| |-- Graph Analytics
| |-- *PH4N745M*
└-- Comments
|-- # Single-line comment (Python)
└-- /* Multi-line comment (Python/R) */
🧑🔬 Data Scientist
Focus: Using data to build models, make predictions, and solve complex problems.
Cleans and analyzes data
Builds machine learning models
Answers “Why is this happening?” and “What will happen next?”
Works with statistics, algorithms, and coding (Python, R)
Example: Predict which customers are likely to cancel next month
🛠️ Data Engineer
Focus: Building and maintaining the systems that move and store data.
Designs and builds data pipelines (ETL/ELT)
Manages databases, data lakes, and warehouses
Ensures data is clean, reliable, and ready for others to use
Uses tools like SQL, Airflow, Spark, and cloud platforms (AWS, Azure, GCP)
Example: Create a system that collects app data every hour and stores it in a warehouse
📊 Data Analyst
Focus: Exploring data and finding insights to answer business questions.
Pulls and visualizes data (dashboards, reports)
Answers “What happened?” or “What’s going on right now?”
Works with SQL, Excel, and tools like Tableau or Power BI
Less coding and modeling than a data scientist
Example: Analyze monthly sales and show trends by region
📈 Business Intelligence (BI) Professional
Focus: Helping teams and leadership understand data through reports and dashboards.
Designs dashboards and KPIs (key performance indicators)
Translates data into stories for non-technical users
Often overlaps with data analyst role but more focused on reporting
Tools: Power BI, Looker, Tableau, Qlik
Example: Build a dashboard showing company performance by department
🧩 Summary Table
Data Scientist - What will happen? Tools: Python, R, ML tools, predictions & models
Data Engineer - How does the data move and get stored? Tools: SQL, Spark, cloud tools, infrastructure & pipelines
Data Analyst - What happened? Tools: SQL, Excel, BI tools, reports & exploration
BI Professional - How can we see business performance clearly? Tools: Power BI, Tableau, dashboards & insights for decision-makers
🎯 In short:
Data Engineers build the roads.
Data Scientists drive smart cars to predict traffic.
Data Analysts look at traffic data to see patterns.
BI Professionals show everyone the traffic report on a screen.
:
✅ SQL – Still the #1 skill for querying and managing structured data
✅ Excel / Google Sheets – Quick analysis, pivot tables, and essential calculations
✅ Python (Pandas, NumPy) – For deep data manipulation and automation
✅ Power BI – Transform data into interactive dashboards
✅ Tableau – Visualize data patterns and trends with ease
✅ Jupyter Notebook – Document, code, and visualize all in one place
✅ Looker Studio – A free and sleek way to create shareable reports with live data.
Perfect blend of code, visuals, and storytelling.
React with ❤️ for free tutorials on each tool
Share with credits: https://t.me/sqlspecialist
Hope it helps :)
📥 Learn to import data from various sources
🧹 Clean and transform data using Power Query
🧠 Understand relationships between tables using the data model
🧾 Write DAX formulas for calculated columns and measures
📊 Create interactive visuals: bar charts, slicers, maps, etc.
🎯 Use filters, slicers, and drill-through for deeper insights
📈 Build dashboards that tell a clear data story
🔄 Refresh and schedule your reports automatically
📚 Explore Power BI community and documentation for new tricks
Power BI Free Resources: https://t.me/PowerBI_analyst
Hope it helps :)
#powerbi
Владелец канала не предоставил расширенную статистику, но Вы можете сделать ему запрос на ее получение.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Также Вы можете воспользоваться расширенным поиском и отфильтровать результаты по каналам, которые предоставили расширенную статистику.
Подтвердите, что вы не робот
Вы выполнили несколько запросов, и прежде чем продолжить, мы ходим убелиться в том, что они не автоматизированные.