SGR Agent Core 0.4.0 + UI
Запись стрима!
YouTube
RuTube
Разработка агента для работы с корпоративным Confluence на базе SGR Agent Core 0.4.0 с использованием локальной модели Qwen3-30B на vLLM.
00:00:00 - Подготовка окружения
- Настройка OBS и серверов (Yandex Cloud + 2x4090(48гб))
- Развертывание vLLM с Qwen3-30B-A3B-Instruct
00:15:00 - Тестирование инфраструктуры
- Проверка работы Qwen через OpenWebUI (~86 tokens/sec)
- Настройка мониторинга GPU
00:27:00 - Настройка SGR Agent Core
- Клонирование репозитория на удаленный сервер
- Подключение через Cursor с SSH
- Конфигурация agents.yaml и config.yaml
00:38:00 - Первый запуск агента
- Тестирование базового SGR Tool Calling Agent
- Запрос цены биткоина - успешно ($96k)
- Разбор двухфазного reasoning
00:52:00 - Разработка Confluence toolkit
- Создание confluence_tools.py с Cursor AI
- Три инструмента: full_text_search, space_search, page_retrieval
- Фиксы с правами доступа
01:10:00 - Тестирование Agentic RAG
- Поиск информации о проекте Smart Platform
- Агент нашел страницы, извлек контент, создал отчет
- Всё без векторизации и чанкинга!
01:26:00 - Запуск фронтенда
- Установка Node.js, настройка портов
- Демонстрация веб-интерфейса
01:36:00 - Финальный тест
- Сравнительный анализ двух проектов
- Объяснение архитектуры решения
01:42:00 - Завершение
- Итог: рабочий агентный RAG за 1.5 часа
- "Когда-нибудь придумаю красивую концовку"
Стек: SGR Agent Core, vLLM, Qwen3-30B, Confluence REST API, Cursor AI, vLLM, guidance
Как результат Агент ищет в Confluence без традиционного RAG pipeline - никаких векторных БД, эмбеддингов и чанкинга!