Давай по новой, ChatGPT, всё ерунда: почему навык промптинга важен для методолога
Лёд тронулся. Онлайн-школы уже активно проверяют домашние задания, используя ИИ, процесс пошёл, и скоро этот тренд доберётся и до корпоративного e-learning.
Как итог: методологу потребуется умение проектировать обучение (от формирования знаний и умений до проверки их усвоения) с использованием ИИ-инструментов.
Вопрос: кто будет писать промпты — методолог или разработчик?
Дело в промпте
Когда мы видим полезный продукт с интегрированным ИИ, он такой полезный не только из-за крутых инженерных навыков разработчика, а, возможно даже в большей степени, из-за качественного промпта, который заставляет ИИ точно и с минимумом ошибок решать поставленную задачу.
Нельзя просто сказать ИИ: «Проверь задание» — нужно детально объяснить, как именно проверять, на что обращать внимание, как реагировать на ошибки.
Методолог, понимающий логику учебного процесса, лучше других справится с этой задачей.
Итеративный ад и джировый пинг-понг
Разработка любого продукта — итеративный процесс. А разработка продукта с встроенным ИИ — очень итеративный процесс.
С обычным софтом всё просто: если код написан правильно — работает, если нет — не работает (чаще всего).
С ИИ всё не так однозначно. Продукт с ИИ не просто работает или не работает. Он умеет работать «почти так, но не совсем», «почти правильно, но немного не так», «правильно, но как-то уж слишком строго, как будто ищет, до чего докопаться»…
Поэтому сценариев между «работает» и «не работает» оказывается тысяча. И на каждом таком сценарии начинается вечная игра в джиру: разработчик сделал → методолог проверил → «не так» → разработчик переделал → методолог снова проверил → «всё ещё не так» — и так до бесконечности. Каждый раз нужно чётко объяснять, что не так и как именно не так.
Если методолог сам умеет писать промпты, этот бесконечный «пинг-понг» просто исчезает. Увидел, что ИИ ответил не так? Взял, поправил промпт — и продолжаем тестировать. Без долгих переписок, без стен из технических задач, без объяснений «почему “не совсем так” — это не совсем так, как нужно».
Методолог = идеальный промпт-инженер
Кто вообще лучший кандидат в промпт-инженеры? Тот, кто умеет просто, понятно и структурировано давать исчерпывающие инструкции, подкрепляя их наглядными примерами.
Это буквально описание методолога.
Методология обучения всегда была про структуру, логику и ясность. Промптинг — это та же методология, только в контексте взаимодействия с ИИ. Если раньше мы проектировали инструкции для людей, то теперь — и для нейросетей. И в этом нет ничего страшного, ведь суть остаётся прежней: чётко ставить задачи, предугадывать ошибки и давать понятные ориентиры. Просто теперь наш «ученик» — это алгоритм.
Алексей Миляев и команда сообщества Digital Learning